Molarity

What is it, and how do I find it?

Molarity is a measure of concentration.

- What is concentration?
- If I have frozen orange juice, let it thaw and I don't add any water to it, it is concentrated.
- By adding water, I dilute it, and it is no longer as concentrated.
- The more water I add, the less concentrated it becomes.

H Padleckas created this image file, completing it on September 15,200 H Padlehttp://commons.wikimedia.org/wiki/file:Round-bottom_flasks.PHG http://commons.wikimedia.org/wiki/file:Round-bottom_flasks.PHG

Calculating concentration

- Molarity is simply the number of moles of a solute dissolved per liter of solvent.
- Or <u>Moles</u> Liter

Here is an example:

A 0.25 M NaOH solution (read as 0.25 molar) contains 0.25 moles of sodium hydroxide in every liter of solution. Anytime you see the abbreviation M you should immediately think of it as mol/L.

Calculating concentration

To calculate molarity:

- Calculate the number of moles of solute present.
- Calculate the number of liters of solution present.
- Divide the number of moles of solute by the number of liters of solution

Lets look at a typical problem. . .

- If 50g of sodium chloride is dissolved in 500 mLs of water, what is the molarity of this solution.
- First, how many moles are there in 50g of sodium chloride?

How many moles are there in 50g of sodium chloride?

Find the molar mass of NaCl. (from the Periodic Table)

11
Na
Na
22.990
Sodium

17

Molar
Mass in
g/mol

 $22.99 + 35.45 = \frac{58.44}{\text{g/mol}}$

Now divide by the amount of NaCl

$$50 \text{ g NaCl x } 1 \text{ mole} = 0.85 \text{ moles}$$

 58.44 g

Now, how many liters do we have?

500mL NaCl x
$$\frac{1 \text{ liter}}{1000 \text{ mLs}} = 0.5 \text{ L}$$

Put it together and solve!

0.85 moles NaCl = 1.7 M0.50 L

Author Carlos Rogério Santana http://commons.wikimedia.org /wiki/file:Bal%C3%A3o_Yolum% C3%A9trico.JPG

- Molarity is simply the number of moles of a solute dissolved per liter of solvent.
- Or <u>Moles</u> = M

What if I know how much I have and the molarity I want?

- Let's look at another problem
- You need a 2M sugar solution to feed the hummingbirds out in your yard. If you have 250 g of sugar, how much water should you add?

Sugar is C₁₂H₂₂O₁₁

How many moles are in 250g of sugar?

 $250g C_{12}H_{22}O_{11} \times 1 mole = .73 moles$ 342 g (molar mass)

We want a 2M solution. Solve for the missing liters.

2M = 0.73 moles or 0.73 moles = 365L2 moles/L

Dilutions from known concentrations...

- What if you have a known concentration, and want to make more of it, but less concentrated?
- Simply figure out either how much you want, or the new concentration you want.

$$M_1V_1 = M_2V_2$$

Try it!

You have 12M H₂SO₄ and you need 250 mLs of a 1M solution of H₂SO₄. How much of the sulfuric acid do you need?
 12M x V₁ = 250 mLs x 1M

$$V_1 = 250 \text{mLs x } 1 \text{M}$$

= 20.8 mLs (into 229.2 mLs water)