Chemistry, Module 3 Lesson 4 Test

- 1) Which of the following is the correct molecular shape of CH₄?
 - a. linear Incorrect the structure of CH₄ has 4 bonding pairs of electrons and no lone pairs
 - b. tetrahedral Correct the structure of CH₄ has 4 bonding pairs of electrons and no lone pairs
 - c. bent Incorrect the structure of CH₄ has 4 bonding pairs of electrons and no lone pairs
 - d. trigonal planar Incorrect the structure of CH₄ has 4 bonding pairs of electrons and no lone pairs

H—C≡N:

- 2) The predicted shape of a HCN molecule is
 - a. bent Incorrect HCN has 0 lone pairs on the central atom and 2 bonding groups of electrons on the central atom because the triple bond counts as a single bonding group
 - b. tetrahedral Incorrect HCN has 0 lone pairs on the central atom and 2 bonding groups of electrons on the central atom because the triple bond counts as a single bonding group
 - **c. linear Correct** HCN has 0 lone pairs on the central atom and 2 bonding groups of electrons on the central atom because the triple bond counts as a single bonding group
 - d. trigonal planar Incorrect HCN has 0 lone pairs on the central atom and 2 bonding groups of electrons on the central atom because the triple bond counts as a single bonding group

3) What is the molecular geometry of the following molecule?

- a. trigonal planar Incorrect; this molecule has 1 lone pair of electrons and 3 bonding groups of electrons.
- b. tetrahedral Incorrect; this molecule has 1 lone pair of electrons and 3 bonding groups of electrons.
- c. bent Incorrect; this molecule has 1 lone pair of electrons and 3 bonding groups of electrons.
- d. trigonal pyramidal Correct; this molecule has 1 lone pair of electrons and 3 bonding groups of electrons.

# of lone pairs of electrons on central atom	# of bonding groups of electrons on central atom	Total number of groups of electrons on central atom	Electron pair Geometry	Molecular Geometry
1	3	4	Tetrahedral	Trigonal pyramidal

- 4) A molecule has 2 lone pairs of electrons and 2 bonding groups of electrons attached to the central atom, what molecular geometry would this molecule have?
 - a. tetrahedral Incorrect
 - b. trigonal planar Incorrect
 - c. trigonal pyramidal Incorrect
 - d. bent Correct

# of lone pairs of electrons on central atom	# of bonding groups of electrons on central atom	Total number of groups of electrons on central atom	Electron pair Geometry	Molecular Geometry
2	2	4	Tetrahedral	Bent

5) Using the following chart, predict the molecular geometry of SO₃.

# of lone pairs of electrons on central atom	# of bonding groups of electrons on central atom	Total number of groups of electrons on central atom	Electron pair Geometry	Molecular Geometry
0	3	3	Trigonal planar	Trigonal planar
1	2	3	Trigonal planar	Bent
0	4	4	Tetrahedral	Tetrahedral
1	3	4	Tetrahedral	Trigonal pyramidal
2	2	4	Tetrahedral	Bent

- a. tetrahedral Incorrect, you need to consider the Lewis Dot structure it has 0 lone pairs on the central atom and 3 bonding groups of electrons on the central atom because a double bond counts as a single bonding group
- b. trigonal planar Correct, it has 0 lone pairs on the central atom and 3 bonding groups of electrons on the central atom because a double bond counts as a single bonding group
- c. trigonal pyramidal Incorrect, you need to consider the Lewis Dot structure it has 0 lone pairs on the central atom and 3 bonding groups of electrons on the central atom because a double bond counts as a single bonding group
- **d.** bent Incorrect, you need to consider the Lewis Dot structure it has 0 lone pairs on the central atom and 3 bonding groups of electrons on the central atom because a double bond counts as a single bonding group