Question 1:

If the value of the discriminant of a particular quadratic equation is 45, describe the nature of the solution(s).

A. Two real, rational solutions

Incorrect. $\sqrt{45}$ is irrational

B. One (double) real solution

Incorrect. The discriminant would have to be zero.

C. Two real, irrational solutions

Correct. $\sqrt{45}$ is irrational, and therefore the solutions are irrational

D. Two complex (imaginary) solutions

Incorrect. $\sqrt{45}$ is real, not imaginary.

Question 2

If the value of the discriminant of a particular quadratic equation is -64, describe the nature of the solution(s).

A. Two real, rational solutions

Incorrect. $\sqrt{-64}$ is not real.

B. One (double) real solution

Incorrect. The discriminant isn't zero.

C. Two real, irrational solutions.

Incorrect. $\sqrt{-64}$ is not real

D. Two complex (imaginary) solutions

Correct! $\sqrt{-64}$ is imaginary.

Question 3:

Find the value of the discriminant for the following quadratic equation and describe the nature of the solution(s): $2x^2 + 3x - 2 = 0$

A. D = -7; two complex solutions

Incorrect. $3^2 - 4(2)(-2) \neq -7$

B. D = 25; two real, rational solutions

Correct. $\sqrt{3^2 - 4(2)(-2)} = \sqrt{25} = 5$, which is rational.

- C. D = 7; two real, irrational solutions Incorrect. $3^2 - 4(2)(-2) \neq 7$
- D. D = 25; one real, rational solution Incorrect. Quadratic formula yields: $\frac{-3\pm5}{4}$, which yields two different solutions.

Question 4:

Which of the following possible discriminant values would yield two real, irrational solutions?

- A. 64 Incorrect. Two real, rational solutions. $\sqrt{64}$ is rational
- B. 24 Correct! $\sqrt{24}$ is irrational, therefore 2 irrational solutions.
- C. -24 Incorrect. $\sqrt{-24}$ is imaginary.
- D. -64 Incorrect. $\sqrt{-64}$ is imaginary.