Question 1:

Which of the following represents the complex solution(s) to the quadratic equation, $0 = 2x^2 + 4$?

A.
$$x = -\sqrt{2}$$

Incorrect. This does not represent a complex number. This is simply a negative irrational number.

B.
$$x = \sqrt{-2i}$$

Incorrect. The number i will not appear inside a radical.

C.
$$x = i\sqrt{2}$$

Correct! $2x^2 = -4$, so $x^2 = -2$, then $\sqrt{x^2 = \sqrt{-2}}$

D.
$$x = 2i \text{ or } - 2i$$

Incorrect. These are solutions to $y = x^2 + 4$

Question 2:

The quadratic equation $y = x^2 - 2x + 6$ has no real solutions. Which of the following are correct solution(s) to this equation?

A.
$$1 + 2i\sqrt{5}$$
 and $1 - 2i\sqrt{5}$

Incorrect. Mistake in simplifying

$$\frac{2\pm\sqrt{2^2-4(1)(6)}}{2(1)} = \frac{2\pm\sqrt{4-24}}{2} = \frac{2\pm\sqrt{-20}}{2} = \frac{2\pm\sqrt{-1*4*5}}{2} = \frac{2\pm2i\sqrt{5}}{2}$$

B.
$$1 + i\sqrt{20}$$
 and $1 - i\sqrt{20}$

Incorrect. Simplification mistake.

$$\frac{2\pm\sqrt{2^2-4(1)(6)}}{2(1)} = \frac{2\pm\sqrt{4-24}}{2} = \frac{2\pm\sqrt{-20}}{2} = \frac{2\pm\sqrt{-1*4*5}}{2} = \frac{2\pm2i\sqrt{5}}{2}$$

C.
$$\frac{2+i\sqrt{5}}{2}$$
 and $\frac{2-i\sqrt{5}}{2}$

Incorrect. Missing a factor in the numerator.

$$\frac{2\pm\sqrt{2^2-4(1)(6)}}{2(1)} = \frac{2\pm\sqrt{4-24}}{2} = \frac{2\pm\sqrt{-20}}{2} = \frac{2\pm\sqrt{-1*4*5}}{2} = \frac{2\pm2i\sqrt{5}}{2}$$

D.
$$1 + i\sqrt{5}$$
 and $1 - i\sqrt{5}$ Correct! $\frac{2 \pm 2i\sqrt{5}}{2} = \frac{2}{2} \pm \frac{2i\sqrt{5}}{2} = 1 \pm i\sqrt{5}$

Question 3:

The solutions to the equation $y = x^2 + 6x + 11$ are

A.
$$x = -3 \pm 2i\sqrt{2}$$

Incorrect. The 2 in 2i divides out when simplified.

B.
$$x = -3 + i\sqrt{2}$$

Correct!
$$\frac{-6 \pm \sqrt{36-44}}{2} = \frac{-6 \pm \sqrt{-8}}{2} = \frac{-6 \pm \sqrt{-1 \cdot 4 \cdot 2}}{2} = \frac{-6 \pm 2i\sqrt{2}}{2} = \frac{-6}{2} \pm \frac{2i\sqrt{2}}{2} = -3 \pm i\sqrt{2}$$

C.
$$x = -6 + i\sqrt{11}$$

Incorrect. Incorrect number under the radical in the quadratic formula $b^2 - 4ac$

D.
$$x = -6 \pm 2i\sqrt{11}$$

Incorrect. Incorrect number under the radical in the quadratic formula $b^2 - 4ac$

Question 4:

The complex conjugates $2 \pm 3i\sqrt{7}$ could be complex solutions to which of the following equations?

A.
$$x^2 - 4x - 59 = 0$$
 Incorrect. This one will have real solutions.

B.
$$x^2 - 4x + 67 = 0$$
 Correct! $b^2 - 4ac = 16 - 268 = -252$

C.
$$x^2 - 4x - 63 = 0$$
 Incorrect. This one will have real solutions.

D.
$$x^2 + 4x + 59 = 0$$
 Incorrect. $b^2 - 4ac = 16 - 236 = -220$