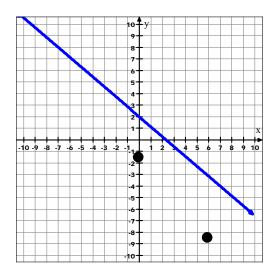

A

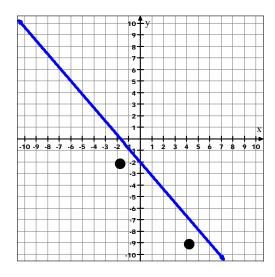

A is <u>incorrect</u> for **two** reasons.

1) Using $y = -\frac{7}{6}x - 2$, the TABLE shows that the points (0, -2) and (6, -9) ought to be on the graph.

X	Y1	
8400700	733 163 1635 1635 1635 1635 1635 1635 163	
X=0		

2) Incorrect, points given on the graph do not satisfy the equation 7x + 6y = -12. (-7, 4) and (7, -8) are on the graph.

C


C is <u>incorrect</u> for **three** reasons.

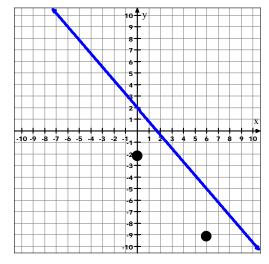
- 1) Using $y = -\frac{7}{6}x 2$, the y intercept is wrong.
- 2) Using $y = -\frac{7}{6}x 2$, the TABLE shows that the points (4, -2) and (9, -6) ought to be on the graph.

X	Y1	
8400F8	73 63 135 207 207 207 207 207 207 207 207 207 207	
X=0		

3) Points given on the graph do not satisfy the equation 7x + 6y = -12. (0, 2) and (7, -4) are on the graph.

В

Correct!


7x + 6y = -12 is equivalent to $y = -\frac{7}{6}x - 2$.

1) Using $y = -\frac{7}{6}x - 2$, the TABLE shows that the points (0, -2) and (6, -9) ought to be on the graph. They Are!

X	Y1	
8400500	73 133 133 25 25 25 25 25 25 25 25 25 25 25 25 25	
X=0		

2) Points given on the graph satisfy the equation 7x + 6y = -12. (-6, 5), (0, -2) and (6, -9) are on the graph.

D

$$7x + 6y = -12$$
 is equivalent to $y = -\frac{7}{6}x - 2$.

D is incorrect for **three** reasons.

1) Using
$$y = -\frac{7}{6}x - 2$$
, the y – intercept is wrong.

2) Using $y = -\frac{7}{6}x - 2$, the TABLE shows that the points (4, -2) and (9, -6) ought to be on the graph. They are NOT.

X	Y1	
84704B	73 63 135 207 207 207 207 207 207 207 207 207 207	
X=0		

3) Points given on the graph do not satisfy the equation 7x + 6y = -12. (0, 2) and (6, -5) are on the graph.